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High-order behaviour of the critical exponents for the 
scalar 4 model with imaginary coupling 
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Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 332, 
UK 

Received 25 October 1983 

Abstract. For real coupling constants the vertex functions for the b3 model have a real 
and imaginary part. We present a method of renormalising both parts of the vertex 
functions for small coupling go. A consequence of our method is that the renormalisation 
group functions develop a non-perturbative imaginary part. This leads to an imaginary 
part for the critical exponents valid for 6 - d = e < 0, where d is the dimension of the space. 
A dispersion relation in E then yields the high-order behaviour of the critical exponents 
as a power series in E .  In particular we obtain the values of the overall universal coefficients, 
c, of the factorial growth. 

1. Introduction 

In this paper we are interested in studying the following model, 

%’= ddx [$(V4)*+$m;4’+ 1/3!g043+ 1 / 4 ! ~ , 4 ~ ] ,  (1.1) 5 
for imaginary go. This model was considered by Fisher (1978) in his study of Yang-Lee 
edge singularities. The exponent U which characterises the Yang-Lee edge singularity 
is related to the value of the critical exponent 77 for the above Hamiltonian by 

u=(d-2+77)/(d+2-77). (1.2) 
It has been shown (Kirkham and Wallace 1978) that the Hamiltonian is stable in the 
absence of the 44 interaction and that the 44 interaction is an irrelevant operator. As 
a result of this, the 44 interaction can be neglected in any calculation of the critical 
exponents and the critical exponents have an oscillatory nature in the E expansion 
( E  = 6 - d in this case). Both these facts are a direct consequence of go being imaginary. 

The E expansion is asymptotic and therefore before one can obtain accurate values 
for the exponents the high-order behaviour of the expansion has to be calculated. For 
a model in which the E expansion is oscillatory, the high-order behaviour of a given 
exponent is typically of the form 

c(- l ) k a  kkbk! E k( 1 + O( k - ’ ) ) .  (1.3) 
The various values of a and b have previously been calculated for this model (Kirkham 
and Wallace 1978). Using these values, resummation techniques have been employed 
by de Alcantara Bonfim et af (1981) to obtain 77 and U. The methods of resummation 
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used in their paper did not require any knowledge of c, although resummation schemes 
using the value of c have been discussed by Le Guillou and Zinn-Justin (1980). 

For real values of go there is no stable ground state and as a consequence of this 
the vertex functions become complex. The imaginary part can be calculated by studying 
the classical solutions (instantons) to the field equations of the theory (Zinn-Justin 
1982). The real part is just the usual perturbative expression apart from some 
exponentially small terms which can be neglected for the purposes of this calculation. 
Once the bare vertex functions have been calculated the expressions have to be 
renormalised in such a way that they have a finite limit as E + 0. We present a 
renormalisation scheme which is a straightforward adaptation of the method discussed 
by McKane and Wallace (1983) for the C#J4 model with negative coupling. Indeed, 
given the lack of understanding of the systematics in their work, the major motivation 
for this calculation was to see if their method of renormalising and of obtaining the 
high-order behaviour of the critical exponents is more generally applicable. 

The theory is renormalised by using an extended minimal subtraction scheme, in 
which the renormalisation group functions have an imaginary non-perturbative part. 
Analytically continuing these functions to E < 0, we find a fixed point, and the values 
of the critical exponents at this fixed point have an imaginary part. A dispersion 
relation in E then gives the high-order behaviour of the critical exponents for the 
Hamiltonian given by equation ( l ) ,  and in particular we obtain the values of the overall 
universal coefficients c. 

The renormalisation scheme is discussed in detail in § 2. In § 3 the renormalisation 
group functions are calculated and using these the imaginary parts of the critical 
exponents valid for E < O  are evaluated. Section 4 is devoted to calculating the 
high-order behaviour of the exponents valid for E > 0. 

2. Renormalisation 

The definition of the vertex function used here is the one described by Amit (1978). 
The imaginary and real parts to the vertex functions are evaluated using dimensional 
regularisation for m i  = O .  The imaginary part for C # J 3  models with real go has been 
calculated in McKane (1979), by expanding about the instanton solution of six 
dimensions. However, it was pointed out in McKane and Wallace (1983) that the 
arguments of the extended minimal subtraction scheme go through more cleanly if 
the expansion is performed about a slightly modified instanton (Drummond and Shore 
1979). The analogous instanton for the d3  theory is 

(2.1) 

and the only effect of expanding about this instanton is to change the function & ( q )  
in equation (43) of McKane (1979) to its value at d = 6 .  Bearing in mind this change 
and the fact that we are employing different normalisations here, the imaginary part 
of the vertex functions can be obtained from equation (44) of McKane (1979), 

dc = - 48A 2 /  go[ 1 + A 2 (  x - x ~ ) ’ ] ~ ’ ~ - ’  
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A = ?( 1 + ~ / 4  + E In 2 - E Y  + O( E ’ ) ) ,  

18 1 1 5 ’ ( 2 )  3 5 ’ ( 4 )  9 y  527 
5 E  2 exp - 25/2r-7/2(2r)-9/10 

b -  

In ( 2 . 2 ) ,  kd = s d / ( 2 7 r ) d ,  5’ are derivatives of the Riemann zeta function, y is Euler’s 
constant and Kl is a modified Bessel function. For arg go = -0 the imaginary part has 
exactly the same form apart from the fact that there is no overall minus sign. 

In ( 2 . 2 )  the integration over the parameter A is a consequence of using collective 
coordinates in the instanton calculation, and as we shall see below it gives rise to some 
poles in E.  The modified Bessel function K1 has an exponential decay for large 
argument, and because of this the integral converges for small A regardless of the 
value of E .  For the large A we can show that 

(qf /A2)~(q , /A)=-5”23”2.rr3/2  2 [( 1 + ( q 2 / 2 A  2)(ln(qi/2A) + y -4) + O(A-3)] ( 2 . 3 )  
and so using this expansion we can see tliat the integral diverges for large A at E = 0 
in 1‘(3’ and r(’) only. 

We will discuss in detail the renormaliation of the theory for arg go = 0. However, 
for arg go = -0 the theory can be renormalised in a similar fashion. 

Let us first look at I‘(3’. To extract the pole term we introduce an arbitrary 
non-exceptional momentum scale p as a lower cut-off in the A integral. The integral 
from 0 to p will give a finite contribution at E = O  and we have not made this term 
explicit. From ( 2 . 2 )  and ( 2 . 3 )  we have 

( 2 . 4 )  ~ ( - 1 ) ( ’ 1 / 2 3 1 / 2 ~ 3 / 2  2 3 2 (1 + O ( A - ’ ) ) ( l  +O(E ,  

The O(A-’) terms give a finite result at E = 0 and so we are only interested in the 
first term. Evaluating the remaining integral for E > 0, we obtain 

If we now do the usual perturbative renormalisations (de Alcantara Bonfim et a1 
1 9 8 1 )  

where we have not made the higher-order terms explicit, then this guarantees that the 
real part is finite at E = 0. The effect of these renormalisations on the imaginary part 
is that Im r(3) becomes 

18 where t b  = c b  exp[ - T E (  1 + ~ / 4  + E In 2 - E Y ) ) ] ,  and hence t,, is finite at E = 0. We are 
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therefore just left with a simple pole which we remove as follows. The full expression 
for F3) is 

and so we now define a full renormalised coupling constant 

Inverting this we have 

(2.10) 

(2.11) 

and this extra renormalisation renders r(3) finite. As we shall see next, we will need 
an extra wavefunction renormalisation, but it is of higher order in g i  and so it does 
not affect F3). 

Now let us turn our attention to r"). We again use p as a lower cut-off for the A 
integral. From (2.2) and (2.3) we have 

X [1+ (q2/A2)( y -;+ In(q/2A)) + O(A-4)]( 1 + O( E ,  gi)). (2.12) 

The O(AW4) terms give a finite result at E = 0. However, the remaining terms will give 
rise to poles and in particular we have the possibility of a momentum dependent pole. 
The first term is quadratically divergent and independent of q-it can therefore be 
removed by a mass counterterm. The exact form of this counterterm does not matter 
since it has no effect on the renormalisation group functions. 

Evaluating the remaining integrals for E > 0, we have, putting in the real part, 

(2.13) 

If we now do the perturbative wavefunction renormalisation (2.6) and the perturbative 
coupling constant renormalisation (2.7) then we are left with 

(2.14) 
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Substituting (2.11) into this, it turns out that the In 4 pole cancels and 

(2.15) 

This expression can be rendered finite by doing an extra non-perturbative wavefunction 
renormalisation given by 

(2.16) 

Finally we look at the renormalisation of the vertex functions with insertions of &412 
operators. The imaginary part can be calculated using the results in McKane (1979) 
and equation (2.1), 

(41;pO 1 r( N,M ) 

arg &1=0 

(2.17) 

where 

The asymptotic expansion of J (  p / A )  for large A is 
$( p )  = 5 X 2-'p'-'12K - 1 + 4 2 (  PI. 

$( p / A )  = 5 X 2-2(1 + O ( E ) ) ( ~  +O(K2))  (2.18) 

and so we can see that the A integral diverges for E = O  in r(2.1) only. To extract the 
pole we proceed analogously to I"') and 1'(3), and we obtain 

r '2 '1 ' (q i ;p)=l+p-Ekdg~ 
arg go=O 

(d+3)/2 

+ 3 ( 5 2 3 n 3 2 2 )  E (7) kdgo exp( -*')(l+O(e, k d d  gi)). (2.19) 

The normal perturbative ZP,z renormalisation is (de Alcantara Bonfim et a1 1981) 

Z $ z = l - k  dg2/E +0(g4) 

and so using (2.7) and (2.20) 
(2.20) 

(2.21) 
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Substituting (2.11) into this, the remaining expression can be rendered finite by an 
additional 27 given by 

(2.22) 

The prescription outlined above successfully renormalises the whole theory to the 
leading order considered. 

3. Renormalisation group functions, fixed points and critical exponents 

We can now proceed to calculate the renormalisation group functions which are only 
strictly correct for E ~ O .  However, in order to obtain a fixed point we have to 
analytically continue all these functions to E C O .  The validity of this continuation is 
one of the main assumptions of the present approach. 

The p function is given by 

P ( g R )  = ( p  dgR/dp)gof)xc,j (3.1) 

and so using (2.7), (2.10) and (2.11) we have that 

where p, is the perturbative p function, namely 

p p (  g R )  = - 4 E g R  - a k d g i  + o( g i ) .  (3.3) 
The fixed points of the theory are the zeros of (3.2) which also satisfy the constraints 
imposed by (2.10). Hence we are looking for the solutions of 

(3.4) 

subject to the condition Re g ;  > 0. It turns out that there is a suitable fixed point for 
arg E = - 7 ~ .  To calculate this fixed point we need the value of the two-loop perturbative 
fixed point (de Alcantara Bonfim et a1 1981). Using this, our fixed point becomes 

Re kdgX2 = - 2 ~ / 3 - ~ * 5 ~ / 3 ~ + 0 ( ~ ~ )  
arg E = - n  

(3.5) 

where 

The corrections-to-scaling exponent w is defined by 

= d p ( g R ) / d g R l g a .  (3.8) 
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From (3.2) 
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and therefore 

Imw =- (3B/2 )  
arg E = - V  

(3.9) 

(3.10) 

The renormalisation group function Y&,(gR) is defined by 

Y@(gR) = ( l / z ~ ) ( p  dZ+/dp)go,,,., (3.11) 

where Z, is the full wavefunction renormalisation, i.e. Z, = ZP,Z",. Evaluating (3.1 l ) ,  
we have that 

x ( y -4- In 2 +A)( 1 + ~ ( g i ) ) .  (3.12) 
This function is related to the critical exponent r] by r] = y,(gX). Substituting (3.5) 
and (3.6) into (3.12), we obtain 

(3.13) 

Finally we can calculate the remaining renormalisation group function, namely 

yd2(gR) = (1/Z@')(p dZ42/dp)gofixed (3.14) 

where Z+z = Zl:Z2. The formula for y&R) is 

(3.15) 
At the fixed point y,2(g;) = v- '  - 2 +  r] and so 

( lg) ( d + 5 ) / 2  

Im v- ' -2+r]=-(B/4)  -- (3.16) 
arg E = - T  

If we had carried out the renormalisation prescription starting with the bare vertex 
functions for arg go = -0 then we would have obtained a fixed point for arg E = T. At 
this fixed point the imaginary parts of w,  r] and v-l - 2 + r] have exactly the same form 
as (3.10), (3.13) and (3.16) respectively, apart from the fact that there is no overall 
minus sign. The real part is unaffected. 

4. High-order behaviour of the critical exponents 

The real part of r ] ,  w and v-' - 2 + r] is the same for arg E = r and arg E = - T, while 
the imaginary part changes sign. We can therefore write a dispersion relation in E to 
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obtain the high-order behaviour of these expressions for E > 0. The dispersion relation 
is 

(4.1) 

In order to  evaluate the asymptotic behaviour of the coefficient of in F ( E )  the 
integration on the right-hand side of (4.1) is performed by the method of saddle point 
integration. This leads to the following results: 

=C (+-I - 3B ~ ~ ( 5 /  18Ikk! k11i2( 1 + o( y)), 
k 27T 

(4.2) 

(4.3) 

v - ' -2+7)=C(- l )k - l -  ~ ~ ( 5 / 1 8 ) ~ k !  k9I2( 1+0(?)), (4.4) 
k 477 

where B is given by (3.7). The numerical value of B is 0.0172. . . 

5. Conclusions 

In the approach previously employed to obtain the high-order behaviour (e.g. McKane 
1979), after renormalising, a dispersion relation in g 2  was performed to yield 
expressions for the /3 function and for the renormalised vertex functions. From these 
expressions the various values of a and b were inferred. Here the dispersion relation 
in g 2  has been replaced by one in E, and as a consequence of this we have managed 
to obtain directly the high-order behaviour of all the critical exponents. The values 
of a and b are in agreement with previous work. We have also managed to obtain 
the values of the overall universal coefficients, c, of the factorial growth. It is clear 
therefore that the new approach has certain advantages. 

To check the values of c by studying the perturbation theory would involve carrying 
out the calculation to fairly high order. This can be seen as follows-there are two 
equivalent ways of writing the coefficient of e k  in (4.2), (4.3) and (4.4), both of which 
can be obtained from the dispersion relation (4.1), namely 

c ( - l )ka  kT( k + b + 1)(  1 + O(ln k /  k ) )  (5 .1)  
and 

c ( - l ) k a  k k !  k b (  1 +O(ln k /  k ) ) .  

Hence in order to obtain a reliable estimate of c from perturbation theory we would 
have to carry out the calculation to at least k,  loops, where k,! k: = r( k,  + b + 1) .  Our 
observation then follows from the fact that the values of b for this model are relatively 
large and from the fact that k ,  is a monotonic increasing function of b. 

In principle analogous calculations to those presented here could be carried out 
for Hamiltonians of the form 

ddX [;( V 4 ) 4m '4 1 / 3 ! g O d i j k 4 i ( $ j + k ]  (5.3) 
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where dijk is a symmetric third-rank invariant tensor of some symmetry group and the 
number of field components, n, is finite. However, as yet there are no physical 
realisations of models of the form (5.3) in which the high-order behaviour of the E 

expansion is oscillatory. If the high-order behaviour is non-oscillatory then knowing 
its exact form cannot be put to any practical use; in particular it cannot be used to 
obtain accurate values of the critical exponents. For these physically realisable models 
one would find, starting the calculation with arg go = * O ,  a fixed point for arg E = TO 
and the imaginary parts of w,  77 and Y-' - 2 +  7 at these fixed points have opposite 
signs. A dispersion relation similar to (4.1) could then be employed to obtain the 
high-order behaviours for E < 0. Analytically continuing these to E > 0 would give the 
desired high-order behaviours. 

We have extended the work of McKane and Wallace (1983). This is not only a 
technical exercise-there are fundamental differences between the 43  and 44 models. 
For example, in perturbation theory the wavefunction renormalisation comes in at 
one loop in the d3  model. We were therefore interested in seeing what differences 
there might be in renormalising the non-perturbative part and if indeed it was possible 
to renormalise it. As we have shown, it is possible to renormalise the theory in an 
analogous way to the 44 case, as all the necessary cancellations of momentum dependent 
poles in the imaginary part of the vertex functions do in fact take place. It remains a 
challenge to understand the systematics of why these cancellations always occur. 
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